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Determination of the Thermal Diffusivity 
and Specific Heat Using an Exponential Heat Pulse, 
Including Heat-Loss Effects 1 

C. B. Vining, 2 A. Zoltan, 2 and J. W. Vandersande 2 

The one-dimensional heat diffusion equation has been solved analytically for the 
case of a heat pulse of the form F(t)= exp( -  t/T)/~ applied to the front face of a 
homogeneous body including the effects of heat loss from the front and back 
faces. Approximate expressions are presented which yield a simple, accurate 
technique for the determination of the thermal diffusivity and specific heat, 
suitable to a wide range of heat-pulse time constant and heat-loss parameters, 
without recourse to graphical techniques or requiring further computer analysis. 
A procedure is described for the determination of an effective time constant to 
allow application of the present results to the case of a nonexponential heat 
pulse. Experimental results supporting the theoretical analysis are presented for 
five samples of silicon germanium alloys of various thicknesses, determined 
using a xenon flash tube heat-pulse exhibiting an exponential dependence. 
Proper consideration of the experimental heat pulse shape is shown to lead to 
reliable corrections to the apparent thermal diffusivity, even for relatively long 
heat-pulse times. 

KEY WORDS: heat capacity; heat-loss correction; heat-pulse method; specific 
heat; thermal diffusivity. 

1. I N T R O D U C T I O N  

In the flash method for measuring thermal diffusivity [ 1 ] a pulse of radiant 
energy is deposited on the front face of a small, thin sample and the tem- 
perature history of the back face is monitored as a function of time. The 
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technique has been extended [2-8] to account for heat losses (when the 
temperature of the back face of the sample reaches a maximum and then 
decreases with further time) and nonzero duration of the heat pulse assum- 
ing various pulse shapes [4, 9, 10], which tends to delay the temperature 
response of the back face to the heat pulse. The subject of this report is that 
of a pure exponential heat pulse, which has not been previously presented. 
Relying heavily on the work of previous authors, the one-dimensional heat 
diffusion equation is solved analytically and numerically for the case of a 
pure exponential heat pulse including the effects of heat loss. 

2. THEORY 

When the duration of the heat pulse represents a significant fraction of 
the transit time for an isothermal temperature front across a sample, the 
response of the back face of the sample will be delayed somewhat com- 
pared to the response due to an instantaneous heat pulse. At high tem- 
peratures radiation losses inevitably become significant, in addition to heat 
losses due to conduction down sample supports, requiring that heat losses 
also be taken into account. The heat diffusion equation for these boundary 
conditions will now be solved exactly, assuming a simple exponential heat 
pulse. 

Consider a flat slab with parallel faces at x = 0 and x -- d and infinite 
lateral extent. The solution to the one-dimensional heat diffusion equation 
for the time dependence of the temperature of the back face, assuming an 
instantaneous planar heat pulse at t=0 ,  x = 0 ,  and equal heat-loss 
parameters (a linear function of the temperature difference from the 
surroundings, denoted by L) describing the two surfaces, is, following 
Watt [6], 

T(t/tc, L)/T~=2 ~ fl"c~ fl,e-~2,t/t~ (1) 
,=0 fl 2 + L2 + 2L 

where 13, are the positive roots of 

(/3 2 - L 2) tan(/3) = 2L/3 (2) 

the material parameters are represented by t c = d2/~, and Too is the final 
temperature in the absence of heat losses. For the exponential heat pulse 
such as shown in Fig. 1 with the analytic form (for a unit pulse) 

F(t) = (3) 
e-  t/t, t >~ 0 
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Fig. L Heat-pulse [unction as recorded by a photodiode detec- 
tor for a commercial xenon flash tube. The solid line indicates the 

simple exponential behavior with r = 4.61 + 0.07 ms. 

solutions are obtained, following Heckman [7], by evaluating the integrals 

f t - -  t '  ) 
T(t/tc, L, Z/tc)/To o = f'-oo F(t') G \ tc ' L dt' (4) 

where G is the solution of the instantaneous heat pulse problem given by 
Eqs. (1) and (2). 

The integrations are readily performed, yielding 

T(t/tc, L, ~/t,,)/T~ 

= 2  ~ fl"c~ _ [e-~2,t/tc--e -t/ '] 
.=o ~u #'L ~ - ~  J (5) 

which reduces to Eq. (1) for r = 0, as it must. If r/tc is sufficiently small and 
t/r is sufficiently large, the term in brackets may be approximated by 
exp[-B2( t -~) / tc] ,  which implies that the time dependence of the 
temperature variation of the back face for an exponential heat pulse is 
nearly identical to the instantaneous heat-pulse case simply delayed by the 
time r, i.e., 

r( o) r(t/tc, L, ~/tc)/T~ ~ \--~c'  r~, (6) 

This indicates that heat-loss correction methods which neglect finite pulse 
effects (such as those due to Cowan [5] or Clark and Taylor [8]) can be 
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extended to the case of an exponential pulse simply by replacing any time 
which occurs in the former analysis, such as t0.5 or 5to.5 with the experimen- 
tally observed times reduced by the amount ~. 

For negligible heat losses and small rite, for example, the thermal 
diffusivity is given by 

(to. 5 - z) = 0.13875 tc = 0.13875 dZ/~ (7) 

which implies that neglect of the finite pulse effect will result in a fractional 
underestimate in ~ of the order r/to.5. If heat loss can be ignored, a plot of 
to.5 vs d 2 will then yield an estimate of z as the intercept and ~ can be deter- 
mined from the slope. Indeed, determining r in this manner for a particular 
heat pulse source should yield reasonable estimates for ~ even for pulse 
shapes deviating significantly from an exponential since the delayed-time 
response of the back face, indicated in Eq. (6), appears to be a general 
future of finite pulse effects. 

Parker has suggested [11] accounting for finite pulse effects by 
measuring to.5 not from the onset of the pulse but from the time at which 
half the energy of the pulse is deposited in the sample. Larson and Koyama 
(see Ref. 10, Eqs. 43-45) also find expressions very similar to Eq. (7), 
suggesting a more broad range of validity once the appropriate T has been 
determined for a particular pulse shape. Based on Eqs. (5)-(7), the correct 
value of ~ for a nonexponential pulse might also be estimated as the time 
required to deposit ln(2) (not �89 of the total heat in the sample. This 
method may be more reliable than the to.5 vs  d 2 method described above 
because the latter method can be distorted by heat loss effects. Utilizing an 
incorrect estimate for z will result in an error in 7 nearly as large as a 
neglect of z itself and is therefore not inconsequential. 

3. NUMERICAL RESULTS 

In the absence of heat loss (L = 0) only one experimental data point 
on the temperature history of the back face is required to uniquely deter- 
mine ~, assuming that r is known. A convenient point is to.5. The ratio 
to.5/tc has been calculated as a function of ~/tc and is shown in Fig. 2. The 
dashed line represents the approximation in Eq. (7), which yields a 
maximum error of about 2% for z/to=0.1 or r/to.5=0.7. Thus, Eq. (7) 
should be useful for pulse times nearly as large as to.5 itself. 

A minimum of two experimental data points on the temperature 
history of the back face is required to uniquely determine ~ and L, assum- 
ing that z is known. Two particularly easy points to determine are to.5 and 
t~n. The ratio Tm/T ~ and to.5/tc can then be parametrized as a function of 
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to.5/t m. Equa t ion  (5) has been solved numerical ly  for values of L between 0 
and  1, with ~ = 0 ,  the results of which are shown in Fig. 3. The curves in 
Fig. 3 have been fit to simple expressions yielding a useful (r = 0) inter- 
polating formula for the thermal  diffusivity and m a x i m u m  temperature:  

o~a/d 2 = 0.13875 (1 - e '8~ - 1.24O7x)/y (8) 
T~/Too = 1 -- e 26~ 1.2841x (9) 
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with x = tm/to, 5 and y = t 0 .  5 .  The superscript a is intended to indicate that 
these expressions represent estimates of the full solutions to Eq. (5). 

From the above discussion we expect Eqs. (8) and (9) to be useful for 
nonzero ~ if instead we use x = (tm- Z)/(to.5- T) and y = to.5- z. The frac- 
tional error between Eq. (8) and the direct numerical solution of Eq. (5) 
for 0.00 ~< z/tc <<. 0.05 is shown in Fig. 4, which may be used to estimate the 
corrections to Eq. (8), if required. Note that the several curves in Fig. 4 
represent different values of T/tc, not the more readily determined 
experimental parameter Z/to.5. A good first-order estimate of v/tc is given by 
0.139 Z/to.5. Even for a relatively large value of z/to.5=0.36 (z/tc=O.05), 
Eq. (8) is in error by only a few percent, which can easily be estimated to 
sufficient accuracy from Fig. 3 if required. Equation (8) will be accurate to 
better than 0.4% even for very large heat losses when Z/to.5 < 0.1. 

The specific heat may be calculated exactly from 

C =  - -  Q ~ (TIn~T~176 (10) 

or estimated from 

C "  =-~ (T~/T~) (11) 

where Q and Tm are the experimental quantities and T~/T~ is given by 
Eq. (9). Figure 5 shows the error in using Eqs. (9) and (11) to estimate the 
specific heat. 
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Fig. 4. The fractional error in Eq. (8) for the thermal diffusivity as a 
function of heat-loss and heat-pulse effects. The primes indicate that the 
observed times should be reduced by the amount z. 
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Equations (8) and (9) have also been compared to the appropriate 
values in Heckman's tables [7] and found to agree to better than 1% up 
to L =  1. Thus, Eqs. (8), (9), and (11) may be used to calculate corrections 
to the diffusivity and specific heat due to heat-pulse and heat-loss effects 
with a high accuracy, without recourse to tables, graphs, or the full 
analytical solution represented by Eqs. (2) and (5). 

4. EXPERIMENTAL RESULTS 

The thermal diffusivity is determined from 600 to 1300 K using an 
apparatus described in detail elsewhere [ 12, 13 ]. A commercial xenon flash 
tube applies a heat pulse to the front surface of the sample of thickness d 
by means of a sapphire light pipe. The sample holder consists of four 
equally spaced rods (alumina tubes over tungsten wire), designed to 
reliably position each sample 0.001 m from the end of the light pipe. The 
front and back sample surfaces are sputtered with graphite to provide a 
reproducible emissivity for each sample. Figure 1 indicates a typical heat 
pulse from the xenon flash tube. The pulse is reasonably well approximated 
by a simple exponential with a time constant z = 4.61 _+ 0.07 ms. 

An InSb infrared detector determines the temperature of the back face 
of the sample. The output of the detector is amplified using a Tektronix dif- 
ferential amplifier and displayed on a Nicolet digital storage oscilloscope. 
The values of t0.5 (the time required for the temperature of the back face to 
first reach one-half of the maximum value), t m (the time required for the 
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Fig. 6. The apparent thermal diffusivity of five samples of p-type 
Sio.8Geo 2 as a function of temperature, neglecting heat-loss and heat- 
pulse effects. 

temperature of the back face to reach the maximum value), and Tm (the 
maximum temperature of the back face) are determined directly from the 
oscilloscope display, utilizing a calibration curve to convert the detector 
output voltages to temperatures. The lamp is flashed three or four times at 
each temperature with a typical reproducibility of +0.5% for Tm. The 
total heat, Q, deposited on the front face of the sample may be determined 
using a sample of known specific heat. 
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Fig. 7. The thermal diffusivity of five samples of Sio.sGe0. 2 as a function 
of temperature, including heat-loss and heat-pulse effects as described by 
Eq. (8). 
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Fig. 8. The half-time as a function of thickness for five samples of 
Sio.sGeo. 2. The indicated intercept overestimates the actual r by 50% due 
to heat-loss effects. 

The diffusivity is calculated from d, ~, to.5, and t m using the theory 
described above. Since only times are involved, the determination of the 
diffusivity is relatively insensitive to experimental details. Determination of 
the specific heat, however, requires determinations of Tr~ and Q using 
calibrations which are critically sensitive to experimental details such as 
sample and detector positions, surface preparation, and heat-pulse 
reproducibility [ 14]. 

Figure 6 shows the uncorrected thermal diffusivity, ~=0.13875o 
d2/to.5, as a function of temperature for five samples of p-type Si0.sGeon, 
calculated neglecting heat-loss and finite pulse effects. Figure 7 shows the 
same results after correction for heat-loss and finite pulse effects using Eq. 8 
above. The scatter in the corrected data is of the order of + 2 % ,  which 
represents excellent agreement. 

Figure 8 shows a typical plot of to. 5 vs d 2 for these five samples. The 
nonzero intercept representing the effect of the finite pulse time is in clear 
evidence. A fit to this line yields an estimate of r = 7.09 ms, which is con- 
siderably larger than determined from the actual heat pulse in Fig. 1. The 
data in Fig. 8, however, include the effect of heat loss, which tends to lower 
the observed to.s, particularly for the thickest samples. This method 
therefore, overestimates r by about 50 % in this case. For greatest accuracy, 

should be determined directly from the heat pulse, as was done in Fig. 1 
and used for the calculation in Fig. 7. 
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6. CONCLUSION 

A technique for determining the thermal diffusivity and specific heat 
from the time to reach the maximum temperature and the time to reach 
half the maximum temperature has been presented, which culminates in the 
simple expressions given in Eqs. (8), (9), and (11) above. The technique 
described here is consistent with previous attempts to correct for heat-pulse 
and heat-loss effects, but is simpler to apply since no tables or graphs are 
required to reduce the data. Moreover, the present method accounts for the 
shape of the actual heat pulse employed and unambiguously identifies �9 as 
the time required for the pulse to deposit ln(2) of the total heat onto the 
front face of the sample. The validity of Eq. (8) for the diffusivity has been 
experimentally confirmed to within __+2% by determining the thermal 
diffusivity on several samples with various thicknesses. 
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